
Jack Mannino

 The Big Picture

 The Risks

 A New Way of Looking At Threats

 The Right Approach

 Resources

2

3

SANS Top Cyber Security Risks

http://www.sans.org/top-cyber-security-risks/#trends

http://www.sans.org/top-cyber-security-risks/
http://www.sans.org/top-cyber-security-risks/
http://www.sans.org/top-cyber-security-risks/
http://www.sans.org/top-cyber-security-risks/
http://www.sans.org/top-cyber-security-risks/
http://www.sans.org/top-cyber-security-risks/
http://www.sans.org/top-cyber-security-risks/

 Organizations started patching and using firewalls

 Number of operating system vulnerabilities dropped

 Patching, blocking services at the firewall, and depending
on Intrusion Prevention became standard

 As these became the “security standard”, emerging areas
of risk were ignored

 Attackers are smart, and began taking the path of least
resistance……

4

 The days of traditional Web Server -> Database

architectures are long gone

 We trust the websites we use every day, right?

 We have web applications:

◦ In our pockets
Mobile apps that communicate with web services

◦ On our desktops
 Adobe AIR allows file system IO

Client-side storage (SQL databases)

◦ In the “cloud”
Think anything and everything Google does

5

6

 Data Loss
◦ Personally Identifiable Information (PII)
◦ Critical Operational Information

 Complete System Compromise
◦ Underlying web servers and databases
◦ Attached systems

 Using Web Attacks as Pivot Points

◦ Many attacks do not require missing patches
◦ Weaknesses in browsers allow intranet attacks

 Firewalls and Perimeter Security Are Ineffective

◦ Unless you are inspecting SSL traffic, you are blind
◦ Complex attacks can originate on external domains

 7

 Commonly referred to as CSRF (“Sea Surf”)

 Browser is designed to send cookies for a given domain whenever they exist

 If a resource for Domain A is requested from Domain B, the cookies

(authentication information) will be sent for any requests for Domain A

 This allows an attacker to perform authenticated transactions transparently

 Why is this dangerous?

8

Referenced from an OWASP presentation

http://www.owasp.org/images/a/a1/AppSec_DC_2009_-_OWASP_Top_10_-

_2010_rc1.pptx

9

http://www.owasp.org/images/a/a1/AppSec_DC_2009_-_OWASP_Top_10_-_2010_rc1.pptx
http://www.owasp.org/images/a/a1/AppSec_DC_2009_-_OWASP_Top_10_-_2010_rc1.pptx
http://www.owasp.org/images/a/a1/AppSec_DC_2009_-_OWASP_Top_10_-_2010_rc1.pptx
http://www.owasp.org/images/a/a1/AppSec_DC_2009_-_OWASP_Top_10_-_2010_rc1.pptx
http://www.owasp.org/images/a/a1/AppSec_DC_2009_-_OWASP_Top_10_-_2010_rc1.pptx
http://www.owasp.org/images/a/a1/AppSec_DC_2009_-_OWASP_Top_10_-_2010_rc1.pptx

 Essentially opens the floodgates….

 More than just weak passwords and absence of lockout policies

 Session tokens are often predictable and have excessively long

lifetimes

 When user privileges are not enforced through a session token,

escalation to higher access rights (administrator) or access to other

user accounts becomes possible

 10

Example

o User A is assigned a session token with the value “AuthToken=XYS3refg4i287jf9235”

o The token has a lifetime of 12 hours

o An attacker is able to register his/her own account

o The attacker attempts several thousand logins, and notices that the session token

increments in a predictable way (first 15 characters are random, but the last 4 increment

by 1 each time)

o The attacker can now access authenticated accounts by guessing valid session tokens,

some of which may grant the attacker full administrative rights

11

 Most common and prevalent is SQL Injection

 SQL Injection allows an external attacker to interface directly with your

backend database

 May result in loss of information, unauthorized data manipulation, or a

complete compromise of the underlying servers

 Other injection attacks include LDAP Injection, SMTP Injection, and XML

Injection

12

13

14

How did this happen?

 Web application did not properly filter input

 Web application did not use “parameterized queries”

for database calls

 The string „ or 1=1–- forces the database to always

return a true value

 As a result, it was possible to bypass the login page

15

What else could we have potentially done?

 Dropped a database table

 Executed system commands (imagine having

your own command line on that server)

 Injected malicious code to serve to users

 Tampered with information contained in the

database

16

 Allows an attacker to run arbitrary Javascript and

HTML in a victim‟s browser

 Can be stored, reflected, or Document Object

Model (DOM)-based

 Used for more than creating popup windows!

17

 Javascript can be used to execute shellcode within a browser

 What you see isn‟t always what‟s really there!

 Information can be sent across domains

◦ Session tokens

◦ User information

 Launch attacks from a victim‟s browser using HTTP and other

protocols (IRC, SSH, FTP, etc)

 18

 Moderate Threat + Moderate Threat + Low Threat = Really Bad

 Some attacks alone may require a significant level of time and skill, but with

the presence of other issues they become trivial to exploit

19

Example

 An XSS vulnerability exists in the “Update Profile” portion of an application

 An attacker wants to get this XSS to execute for another user

 Several options exist

◦ Find SQL Injection

◦ Brute-force attack their password

 Both of those options may take a significant amount of time and may set off alarms

 Solution- Attack broken authentication!

20

 Many organizations classify vulnerabilities differently according to the authentication

level required to perform it

 As an example, the DoD rates XSS and SQL Injection as moderate vulnerabilities if they

are discovered in the authenticated portion of an application, but critical if it requires

prior authentication

 If authentication is trivial to circumvent, shouldn‟t this mean we treat the vulnerability

differently?

21

 There are many, many ways to get inside the perimeter

 XSS Shells, Social Networking “Bots”, and many more

 Flash is dangerous…very dangerous.

 Assume that your firewall has already been breached…now what?

22

o An application that contains no “sensitive” data shouldn‟t be ignored

o Identify the threat vectors that are relevant to an application or system

o Develop a security plan and model it according to these threats

23

o Scanning can help quickly find “low hanging fruit”, but shouldn‟t be where you stop

o Start thinking about security early in an application‟s development- in production is not

the right time

o Code review and testing in a runtime environment each have unique advantages

o One should not replace the other, rather they should complement each other

24

Strengths Weaknesses

 Direct access to code

 Easier to determine
root cause of issues

 Unobstructed view of
actual vulnerabilities

 Automated SCA tools can

return millions of false
positives

 Many issues can be
found faster in a runtime
environment

 Tools cannot detect logic

or contextual issues

25

Strengths Weaknesses

 A single tested parameter may

represent hundreds of lines of code

 Wider choice of commercial and

open-source tools

 Represents an actual attacker‟s view

 Best way to test how multiple
browsers handle an application

 Manual Runtime Analysis is excellent
for discovering logic and contextual
issues

 Some holes are difficult

to detect without access
to code

 Automated tools have
known issues testing
sites using Ajax and
Flash

 Automated tools lack the
intelligence to
understand and subvert
filters

26

Screenshot of Burp Suite Pro

27

 It is critical to understand the limitations of

automated security tools

 Automation is best used to detect “low hanging
fruit”

 Manual testing is resource intensive and requires

intimate knowledge of web technologies

 Repeatable methodologies are essential to

establishing an efficient assessment program

28

 OWASP Top 10
http://www.owasp.org/index.php/Category:OWASP_Top_T
en_Project

 Web Application Security Consortium
http://www.webappsec.org/

 OWASP Phoenix Project
http://www.owasp.org/index.php/Phoenix/Tools

 Threat Modeling

http://www.owasp.org/index.php/Threat_Risk_Modeling

 SANS Top Cyber-Security Risks

http://www.sans.org/top-cyber-security-risks/#trends

29

http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.webappsec.org/
http://www.owasp.org/index.php/Phoenix/Tools
http://www.owasp.org/index.php/Threat_Risk_Modeling
http://www.sans.org/top-cyber-security-risks/
http://www.sans.org/top-cyber-security-risks/
http://www.sans.org/top-cyber-security-risks/
http://www.sans.org/top-cyber-security-risks/
http://www.sans.org/top-cyber-security-risks/
http://www.sans.org/top-cyber-security-risks/
http://www.sans.org/top-cyber-security-risks/

Contact Information:

Jack Mannino

jack@nvisiumsecurity.com

30

mailto:jack@nvisiumsecurity.com

